Robust Ranking Models using Noisy Feedback
نویسندگان
چکیده
Direct feedback of users of search engines by click information is naturally noisy. Ranking models that integrate such feedback in their training process must cope with this noise. In worst case such noise can lead to large variance among the results for different queries in the resulting rankings. We propose to integrate model averaging like bagging and random forest methods to reduce the variance in the ranking models. We perform an experimental study on different noise levels using a state of the art ranking model.
منابع مشابه
Minimax Rates and Efficient Algorithms for Noisy Sorting
There has been a recent surge of interest in studying permutation-based models for ranking from pairwise comparison data. Despite being structurally richer and more robust than parametric ranking models, permutation-based models are less well understood statistically and generally lack efficient learning algorithms. In this work, we study a prototype of permutation-based ranking models, namely,...
متن کاملStatistical Machine Translation Models for Personalized Search
Web search personalization has been well studied in the recent few years. Relevance feedback has been used in various ways to improve relevance of search results. In this paper, we propose a novel usage of relevance feedback to effectively model the process of query formulation and better characterize how a user relates his query to the document that he intends to retrieve using a noisy channel...
متن کاملStock Evaluation under Mixed Uncertainties Using Robust DEA Model
Data Envelopment Analysis (DEA) is one of the popular and applicable techniques for assessing and ranking the stocks or other financial assets. It should be noted that in the financial markets, most of the times, the inputs and outputs of DEA models are accompanied by uncertainty. Accordingly, in this paper, a novel Robust Data Envelopment Analysis (RDEA) model, which is capable to be used in t...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملEnhancing Relevance Models with Adaptive Passage Retrieval
Passage retrieval and pseudo relevance feedback/query expansion have been reported as two effective means for improving document retrieval in literature. Relevance models, while improving retrieval in most cases, hurts performance on some heterogeneous collections. Previous research has shown that combining passage-level evidence with pseudo relevance feedback brings added benefits. In this pap...
متن کامل